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The low-lying H states of H2 consist of one core (a) and one valence (n) electron and afford a direct 
evaluation of intershell a-n interaction. After resolution of the electronic energy into a only, 7r only, 
and a-n parts, it is shown that an electronic change in this model system is due solely to a change in 
the n electrons. Simple Hiickel theory is examined. If the molecular core is represented properly, 
regardless of the n wave function the calculated c~ and fl parameters are in reasonable agreement with 
the "empirical" parameters. This agreement appears to be due to a fortuitous cancellation of energy 
contributions. 

Die niedrig liegenden//-Zust[inde des H 2 bestehen aus einem Rumpfelektron a und einem Valenz- 
elektron n und erm/Sglichen eine direkte Auswertung der a-n-Wechselwirkung zwischen zwei Schalen. 
Nach der Zerlegung der elektronischen Energie in a-, n- und a-n-Anteile wird gezeigt, dab eine elek- 
tronische Ver~inderung in diesem Modellsystem nur auf eine Ver~inderung des n-Elektronenanteils 
zuriickgeht. Die einfache Hiickeltheorie wird untersucht. Wenn der Molekiilrumpf geeignet dargestellt 
wird, so sind, unabh~ingig vonder n-Wellenfunktion, die berechneten Parameter ct und fl in guter l~ber- 
einstimmung mit den empirischen Parametern. Diese Ubereinstimmung scheint auf eine starke Aus- 
15schung yon Energieanteilen zuriickzugehen. 

Les 6tats inf6rieurs n de H 2 consistent en un 61ectron de coeur (a) et un 61ectron de valence (n) 
et fournissent une 6valuation directe de l'interaction entre couches a-n. Apr6s expression de l'6nergie 
61ectronique en parties a, n et a-n, on montre qu'une modification 61ectronique de ce syst6me mod61e 
est due seulement ~ une modification des 61ectrons n. La th60rie de Hiickel simple est examin6e. Si le 
coeur mol6culaire est convenablement repr6sent6, quelle que soit la fonction d'onde n, les param6tres 
ct at fl calcul6s sont en accord raisonnable avec les param6tres empiriques. Cet accord apparalt comme 
le r6sultat d'une compensation fortuite de contributions 6nerg6tiques. 

Introduction 

C o n v e n t i o n a l l y ,  t h e  ~z-electron a p p r o x i m a t i o n  a l lows  o n e  to  c o n s i d e r  t h a t  an  

e l ec t ron i c  c h a n g e  in a m o l e c u l e  c o n t a i n i n g  n e l ec t rons  is r e l a t ed  sole ly  t o  a c h a n g e  

in t h o s e  e lec t rons .  But ,  as i n d i c a t e d  by  s tud ies  on  exc i ted  s ta tes  o f  v a r i o u s  m o l e -  

cules,  the  a c o r e  o f ten  u n d e r g o e s  a s izeable  r e a r r a n g e m e n t  u p o n  e x c i t a t i o n  o f  t he  

m o l e c u l e .  F o r  e x a m p l e ,  u p o n  e x c i t a t i o n  e thy l ene  is n o  l o n g e r  p l a n a r  I-1], a ce ty l ene  

n o  l o n g e r  l inea r  [ 2 ~ t ] ,  a n d  b e n z e n e  n o  l o n g e r  h e x a g o n a l  [-5, 6]. H e n c e  the  as- 

s u m p t i o n  t h a t  an  e l ec t ron i c  c h a n g e  is a f u n c t i o n  o f  t h e  c h a n g e  in t he  n e l ec t rons  
only,  in genera l ,  is n o t  va l id  for  q u a n t i t a t i v e  s tudies .  

T h e  p u r p o s e  o f  th is  p a p e r  is to  e x a m i n e  the  c lass ica l  n - e l e c t r o n  a p p r o x i m a t i o n  
in a sys temat ic ,  q u a n t i t a t i v e  m a n n e r .  T h e  l o w - l y i n g  H s ta tes  of  t he  h y d r o g e n  
m o l e c u l e  a r e  t he  sys tems  e x a m i n e d .  B e c a u s e  the  e l e c t r o n i c  c o n f i g u r a t i o n s  for  these  
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states consist of a single o- (core) molecular orbital and a single ~z (valence) molecular 
orbital, there is no intra-shell correlation and a direct evaluation of one ~ electron 
interacting with one ~ electron is possible. In addition, there is only one geometrical 
variable, the internuclear distance between the two atoms. 

The selected//states of H 2 are molecular Rydberg systems. Since the core 
electron is highly localized about the nuclei while the valence electron is very 
loosely bound, the frozen core description is expectedly an accurate one [7]. 
Thus, the selected states represent idealized ~ systems and will be considered as 
analogs to conventional ~ systems. Furthermore, highly accurate calculations have 
been performed on these small systems [8]. Such calculations provide insight into 
the r~-electron approximation and its use on more conventional conjugated 
systems where similar, comparably-accurate calculations are not yet available. 

An hierarchy of two wave functions is employed in this work. The first wave 
function is the familiar single-configuration analytical LCAO-MO-SCF wave 
function generated by the method formulated by Roothaan [9-11]. The extended 
basis self-consistent field (SCF) calculations of this work are Hartree-Fock (HF) 
calculations. The second wave function is the double-configuration SCF wave 
function, hereafter called the optimal double configuration (ODC) wave function. 
Table 1 and Fig. 1 demonstrate lucidly the "goodness" of the HF and ODC 
calculations compared with the experimental results of Herzberg [12] and 
Namioka [13] for the C t//u state of H2. Because this molecular system has weak 
electron-electron repulsion, correlation energy is small (0.12 eV [8] contrasted 
with 1.1 eV [14] for the ground state of H2) and the single-configuration HF 
potential curve closely approximates the experimental curve near the minimum 
(Re). Consequently, the spectroscopic constants derived from this curve are quite 
good. But at larger internuclear distances (R), the HF model is inappropriate 
because it considers electron correlation improperly and dissociation to a mixture 
of atomic and ionic states rather than to purely atomic states occurs. At large R 
the ODC model includes all electron correlation and proper dissociation occurs. 
At Re about half of the correlation is included and the ODC spectroscopic constants 
show a corresponding improvement over the HF constants. 

Table 1. Spectroscopic constants for H2(C l/-/u) 

E (hartrees) HF  a O D C "  Exp. b 
- 0.7139131 - 0.7158284 - 0.71859 ~ 

R (bohrs) 1.934 1.948 1.952 
toe ( cm-  1) 2548.0 2489.0 2443.0 
Be(c m -  l) 31.9 31.5 31.4 
ogexe(cr n -  1) 57.3 61.5 67.0 
~ (cm-  1) 1.490 1.565 1.626 

a Ref. [8]. 
b Ref. [12]. 

Namioka  [13] gives values of coe=2448 em -1 and 
E =  -0.7183492 hartrees at 1.952 bohrs. There is doubt  as to the 
reliability of the older Herzberg value, -0 .71859 hartrees. 
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Fig. 1. Potential energy curves for the C 1/1. state of H 2 (Ref. [-8]) 

These two wave functions can be resolved readily into a only, n only, and 
a-n parts. This is essential to the analysis of this paper. More complex wave 
functions [15-17] approach more closely the experimental results, but they can 
not be so resolved. In light of the purpose of this paper, these two wave functions 
are more than sufficiently accurate to provide the quantitative analysis intended. 

The ~-Electron Approximation 

Lykos and Parr [181 put the n-electron approximation on firm theoretical 
ground when they defined the a-~ separability conditions: 

A) The total n-electron wave function ~(1, 2, ..., n) may be written as the 
antisymmetrized product  of the a wave function Z(1, 2, . . . ,  G) and the n wave 
function II(G+ 1, G + 2  . . . . .  n). The a wave function is an anti-symmetrized 
function based on the coordinates of the G a electrons; the n wave function is an 
antisymmetrized function based on the coordinates of the G ~ electrons. Al- 
gebraically, 

~(1, 2 . . . . .  n) = N ~ d  {(Z)(//)}, 

where d is the antisymmetrization operator which antisymmetrizes the (S)(//) 
product  with respect to exchange of the n~ a electrons with the n~ ~z electrons, Nr 
is the normalization factor defined by 

Nr -~, 

and n = n. + n~. 
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B) Each function X,/7, and T is normalized to unity. 
C) The functions S a n d / 7  can be expanded in terms of orthonormal Slater 

determinants which are built from orthonormal sets of one-electron functions, no 
member of which enters both 27 and H. 

Consider the electronic Hamiltonian for an n-electron system 

(1) 

where the i and i' summations are over the a electrons, the j  andj '  summations are 
over the n electrons, and the ~ summation is over the nuclei. Ti is the kinetic energy 
of the ith electron, V,i is the potential energy of the ith electron in the field of the 

th nucleus, and V u is the potential energy of the ith electron in the field of the j th 
electron. Eq. (1) can be rewritten 

~ ( 1 ,  2 , . . . ,  n) = ~e~ 2 , . . . ,  no) + ~ ~  + 1, n~ + 2 . . . .  , n) 

+ V~(1, 2, ..., n~, n, + 1 . . . . .  n). 

Consider now a molecular wave function which obeys the r separability condi- 
tions and determine the expectation value of the electronic energy for the system: 

Eelee t = < IJg(l . . . . .  n ) l J r  . . . ,  n)[  T ( 1  . . . .  , n ) > / ( T ( 1  . . . .  , n)] T ( 1  . . . . .  n ) )  
(2) 

= E~ + E~ + E.~, 

where 

E ~ = <27 lJf~ z>/<SIX>, 

E o = < U l ~ ~  

and E ~  = <~lV,,,~l ~ > / < ~ I T > .  

The latter two energy terms may be incorporated into E~ resulting in the equation 
Eeloot = E ~ + E~.  

As usually written, the n-electron approximation is defined as that approxima- 
tion where the wave functions for different states of the system, kg and T', satisfy 
the three separability conditions and have a common a wave function. The energy 
of transition between these states, A Eeleet, is then a function of the change in the 
rc electrons only: 

Z Eelect = E'elect - Eelect _.  ( E  o --}- E ' )  - ( E  ~ -~ E~)  = E~  - gTr. 

Parallel to the general development of an n-electron system, the energy of the 
two-electron systems is resolved into E ~ E ~ and E,~ terms. The Hamiltonian for 
H2 is written 

~ ( 1 ,  2) = (T1 + V~l + Vpl) + (T2 + V~2+ V~2)+ V12 

= Yf~ (1) + a f~  (2) + V,=(1, 2), 

where the electrons are labelled 1 and 2 and the nuclei, a and ft. Since the energy 
expectation value is independent of spin, the spin part of the wave function is 
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factored off to yield the space-only single-configuration wave function 

i.3 7*nF = {0-(1) n(2) + 0-(2) n(1)}/]/~, 

where the positive sign designates the singlet state and the minus sign, the triplet 
state. It is unnecessary to subscript the 0- and rt molecular orbitals (MO's) according 
to their parity until later, when referring to a par t icu la r / / s ta te .  The electronic 
energy is 

i'3EnF = (1'3 ~(1, 2)lag(l, 2)[ 1'3 ~(1, 2 ) ) / ( i ' 3~(1 ,  2)1 1'3 ~e (1, 2)) 

= (0-(1) re(2)[aet~ 2)1 0-(1) n(2)) -I- (0-(1) rc(2) l~ (1 ,  2)10-(2) n(1)). 

Expansion of the Hamiltonian and algebraic manipulation yield 

I'3EHF = (a(1)[a~gO(1)l 0-(1)) + (n(2)l~~ n(2)) 

+ (0-(1)n(2)1r7211 0-(1)n(2))+ (0-(1)n(2)[rx~ [ 0-(2)rc(1)) (3) 

=H,, + H,~ +(J,= +_K,,,,). 

The one-electron terms are the energies of the a electron and the n electron, 
respectively, in the field of the two nuclei. The two-electron terms are the coulombic 
and exchange contributions of the two electrons mutually in the field of one 
another. Comparison of Eqs. (2) and (3) gives the following equalities: 

E ~ = H~, E ~ - H~, and E~= = J ~  +_+_ K ~ .  

So far the only limitation to the wave function is that it be a single-configuration 
wave function. Lykos and Parr [18] show that functions 2; and/- /may be expanded 
in terms of orthonormal Slater determinants. The total wave function, for example, 
becomes 

7J = (Ai Z1 + A2 2;2)" (B1 Hi  + B2II2), 

where no one-electron 0- M O  enters both Z 1 and 2; 2 and no one-electron n M O  
enters both H1 and/ /2 .  If A 2 = 0, one has employed the method known as "con- 
figuration interaction within the n-electron approximation". That is, the 2; wave 
function (core) is frozen a n d / / i s  expanded in a series o f / / i  configurations. 

The ODC wave function also can be recast in terms of the n-electron approxi- 
mation 1. The ODC  wave function is written 

l'a 7Job c = A {0-(1) x(2) + a(2) ~(1)}/V2 

+ B{0-'(1) re'(2)-4-_ 0"(2) ~'(1)}/~/-2, 

where as before the minus sign designates the triplet state, and A and B are the 
configuration mixing coefficients. The first configuration corresponds to a bonding 
state and the second, a repulsive state. The electronic energy is written 

I ' 3EOD C = A2(H~ + H~ + J.= + K.=) 

+ B2(H., + H=, + J.,=, + K~,=,) + 2AB.  Eeoupling , 

1 Clearly, the earlier wave function with A 2 # 0 is no t  the same as the O D C  wave function. That  is, 
(A12~1 + A22~2) �9 (B1H1 + B2H2) # A~lII1 + BX2H 2. 



28 W. T. Zemke: 

Table 2. Division of  energy of  H z molecule into a and n parts 

Wave function E ~ E ~ E~vithin a Ebe . . . . .  

HF H~ H~ J~ _+ K~ 
ODC A 2. H ,  + B 2. H, ,  A 2. H~ + B 2. H~, A 2 (J , ,  +_ K ~ )  2 A B .  E~oupung 

+ B2(J,,~, _+ K,,~,) 

a E ~ t a ,  = E w i t h i n  ~_ Eabet . . . .  . 

where the energy Eeoupling is composed of exchange contributions arising from 
exchange of electrons between the two configurations. In the H F  case, E ~ and E ~ 
are just the H ,  and H.,  respectively. But in the ODC case, the E ~ and E ~ are 
composed of one-electron energies from both configurations, each properly 
weighted. For  easy comparison, the division of energy into a only, n only, and 
a-n interaction parts is found in Table 2. 

The a-n interaction for the HF  wave function is intra-configurational. In the 
ODC wave function there is an intra-configurational a-n interaction within the 
first configuration, one within the second configuration, and an inter-configura- 
tional a-n interaction between the two configurations. That  is, in the two-configura- 
tion wave function there occurs a a-n interaction contribution distinct from (in 
addition to) that of the single configuration. Evaluation of E ~  contributions will 
be presented in the next section. 

It is important to realize that the ODC wave function transcends the n-electron 
approximation. The orbitals are partitioned as before into a and n classes, but the 
restriction that the total wave function be an antisymmetrized product is removed 
by the addition of a second configuration. The ability to divide the energy of the 
system into o- and n parts with both wave functions, the H F  wave function obeying 
the z-electron approximation and the more accurate ODC wave function trans- 
cending the n-electron approximation, affords quantitative examination of the 
approximation. 

Results and Discussion 

Selected one-electron expectation values for a and n MO's for HF and ODC 
wave functions have been presented for the C 1//u state of H2 I-8]. Close agreement 
between HF  and ODC a MO expectation values was observed, but HF and 
ODC n MO expectation values differed considerably. Fig. 2 compares the core 
energy, E ~ of the four Rydberg systems for the HF  model. If E ~ curves for the O DC 
model were included, they would be superimposed over those presented. Thus, 
the a charge density is essentially unchanged regardless of the wave function model 
employed in determining the n charge density. 

But the nearly identical curves of Fig. 2 are not unexpected. The a electron is 
in the field of two bare nuclei and strongly influenced by them. The n electron is 
weakly attracted by the nuclei and does not strongly affect the a electron. Com- 
parison with the E ~ value for the one-electron H~- system shows that indeed the 
a electron does not "feel" the outer-lying n electron. This is the case whether the 
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Table 3. Transition energies (hartrees) 

29 

R(bohrs) Singlet states" Triplet states b 

A.(HF) A~(ODC) A(ODC) A(Browne) ~ A.(HF) A.(ODC) A(ODC) A(Browne) ~ 

2.00 0.0695 0 .0689  0 .0696  0.0742 0.0867 0 .0874  0 .0866  0.0935 
4.00 0.0532 0 .0169  0 .0406  0.0432 0.0672 0 .0408  0 .0589  0.0635 
6.00 0.0477 -0.0046 0 .0042  0.0039 0.0515 0 .0035  0 .0135  0,0139 
8.00 0.0374 -0.0484 -0.0010 -0.0012 0.0325 0 .0018  0 .0030  0,0031 

" A = E,o,aj(1/7o) - E~o,,j(1/7.); A, = E~(11Io)  - E~( t11 , ) .  

b A = E t o t a l ( a H a )  - E t o t a l ( 3 / T u )  ; A ~ = E n ( 3 [ I a )  - E~(317u). 
See Ref. [211 for the 17, state energies and Ref. 1-22] for the Hg state energies. 

n electron is in a bonding MO (17, states) or an antibonding MO ( 1 I  0 states). 
Because the o core is effectively insensitive to the n electron, the frozen core 
assumption of the n-electron approximation is obeyed for these systems. 

However, the E ~ energies are dependent strongly upon the molecular state. 
Fig. 3 shows the E ~ energies as a function of R for the one-electron H~ and two- 
electron H 2 systems. The E ~ curve for H I  is the total electronic energy for the 
2H, state [19]. For  this system there is only one n electron in the field of two bare 

nuclei and the E ~ curve is lowest in energy. For  the Ha systems there is one n 
electron in the field of two nuclei shielded by the inner a electron. Correspondingly, 
the E ~ curves for H2 are above that for H~-. Because the n electron is in a bonding 
MO for the 11, states and an antibonding MO for the/70 states, E ~ curves for the 
latter states are higher in energy. As expected, the triplet state curves are lower in 
energy than the singlet state curves of the same symmetry because additional 
energy is required to pair up two electrons in the singlet states 2 

The insensitivity of the core for both HF and ODC models has been demon- 
strated; an evaluation of the n-electron approximation in terms of transition 
energies and ionization potentials now follows. Table 3 contains the energy 
transitions between states of the same multiplicity for increasing R. Included in 
the table are HF A~ values, ODC A~ values, and two A values, determined from 
the ODC calculations and the calculations of Browne [21, 22] on these four states. 
The A~ values are within the frozen core approximation hnd only E~ differs upon 
excitation. The A values are energy transitions where no frozen core approxima- 
tion is assumed. Although slight differences in the A values occur due to the dif- 
ferences in the specific calculations, they show similar behavior with increasing R. 

The energies of Table 3 correspond to excitation of the ~ electron from a bonding 
to an antibonding MO. The results of the table indicate that A Ee~e~t approximately 
equals E'~ - E ~  near the minimum of the potential curve (2.00 bohrs) for either 
HF or ODC wave function. As one moves toward larger R, the frozen core ap- 
proximation collapses for the HF  model. However, with the ODC model the 

2 Hartree-Fock wave functions were used in calculating the H2 curves of Fig. 3. For the/7u states, 
E ~ energies for the ODC model are very nearly those for the HF model. For the Hg states, E ~ energies 
for the ODC model fall lower in energy than the corresponding HF 0 E~ energies [20]. These differences 
are due to the basis set which was optimized explicitly for the 1H, state. If a fully-optimized basis set for 
the 11 o states were available, it is expected that differences between HF and ODC curves for these states 
would be slight. 
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essential validity of the frozen core remains. The ODC A~ values give somewhat 
less satisfactory results from 4.00-6.00 bohrs because of large potential maxima 
occurring at this region of the potential curves for the H a states [8, 22, 23]. Thus 
one can conclude that, even though the HF model obeys the cr-zc separability 
conditions and the frozen core conditions, the HF  transition energies within the 
n-electron approximation lose their significance at large R. Whereas with the more 
flexible ODC model, which transcends the a-re separability conditions, transition 
energies are quite reasonable within the frozen core approximation at all R. 

The ionization potential lIP) necessary to remove completely the zc electron 
from the unchanging core is just - E~: 

i v  = ~ . ~  - E .  2 = E ~ - ( t  ~ + e . )  = - ~ .  
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Fig. 4 contains curves of - IP and E~ for the 1H u state of H 2 o v e r  all R. The IP 
values are the differences between Etota I (H~, 2z~;) and Etotal(H2, 1Mu). The very 
accurate energies of Kolos and Wolniewicz [15] for H2 and Bates, Ledsham, and 
Stewart [19] for H~- were used to determine the IP curves of Fig. 4. There are no 
calculations comparable to the Kolos and Wolniewicz ones for the potential curves 
of the other three H 2 states and these states are not included in the figure. 

The HF and ODC calculations at Re yield E~ results which are close to the 
- I P  value. But upon moving toward large R, the HF curve runs counter to the 
- I P  curve. In contrast, the ODC curve shows the essential features associated 
with the removal of the outer n electron at all R values.The answer to the collapse 
of the HF  model lies in the repulsive interaction between a and n electrons, viz. 
E,~. The analytical division of E,~ into intra-configurational and inter-configura- 
tional contributions was presented in Table 2; evaluation of these contributions 
is now presented. 

Table 4 contains a breakdown of E,~ into •bet . . . .  and F, 'vithin contributions 
- - t T ~  - - 6  r 

for the ODC wave function and E ~  for the H F  wave function, all as a function 
of R. Data  are presented only for the 1H u state; similar data occur for the other 
three states [20] and are not presented. It is understood that any conclusions 
drawn from analysis of Table 4 are in general valid for all four molecular states. 

One expects E ~  to vanish as the molecule is pulled apart and the electrons are 
located on the separate nuclei. But E,~(HF) does not diminish rapidly enough with 
increasing R while E,~(ODC) does. Although Eabe~ tween for the ODC model actually 
increases slightly as R increases, this is not unexpected because the two con- 
figurations are mixed together more at large R than at small R. The inclusion of 
both intra-configurational and inter-configurational electron-electron repulsion is 
necessary for the proper behavior of Et~ as a function of R. Clearly, then, the 
collapse of the HF  model within the n-electron approximation is due to the im- 
proper evaluation of E,~. In order to evaluate the molecule properly for increasing 
R, one should use a more flexible wave function. 

The ability to resolve excited H2 into separate parts for these wave functions 
affords examination of the separability problem as the "n bond" is stretched apart; 
but in n-electron systems the molecule is usually considered in non-dissociative 
processes. Why then examine separability with the single-configuration wave 
function which becomes incorrect when the internuclear distance is stretched well 
beyond Re [24]? To the contrary, separability is worthy of examination as a func- 
tion of R because of the sensitivity to change in geometry upon excitation of the 
molecule. If the L C A O - M O - S C F  wave function cannot account for a-n inter- 

Table 4. a-n interaction energies (hartrees) 

R(bohrs) E~i'~(HF) E~'hi~(ODC) E~' . . . .  (ODC) Etf~'(ODC) 

2.00 0.21405 0.17402 0.03948 0.21350 
4.00 0.19218 0.13144 0.05031 0.18175 
6.00 0.17404 0.08107 0.06092 0.14199 
8.00 0.15896 0.04201 0.07051 0.11252 

10.00 0.14755 0.01514 0.07812 0.09326 
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action properly at all geometries, results may lose their meaning. This suggests 
particular care in the use of such functions for conventional E-electron systems. 
Although the geometrical variable treated in this work is the bond distance, it is 
understood that one must excercise care also in selecting wave functions for larger 
molecules when changes in bond angles are to be considered. 

Hiickel Theory 

Communication of the results concerning the 7~-electron approximation may 
be presented also in terms of simple Htickel theory 3. Traditionally, workers using 
Htickel theory calibrate the method with experimental results; the particular 
calibration then allows examination of related molecular systems in the same or 
similar experimental situation. Despite many apparent successes of Htickel theory 
[28-30], the validity of transferring the calibrated parameters from one system to 
related systems is often largely a matter of faith, and attempts have been made to 
relate the theory to the underlying quantum mechanics 4. The quantum mechani- 
cally well-defined wave functions and energy levels of these model 7~-electron 
systems permit the Htickel operator ~f~ff to be defined explicitly and, subsequently, 
afford a quantitative test of simple Htickel theory. 

Htickel theory states that the Hamiltonian is a sum of one-electron operators 
over the 7~ electrons only, 

3/t~ff ( t o t a l )  = ~ ~f~ff ( / )  
i 

and 

JCSf(i) �9 4,(i) = ~ "  4,(i) ; 

that the /7  wave function is a simple product of one-electron functions; and that 
the one-electron functions are LCAO functions [25]. 

For the H states of H2, application of the variation method yields the secular 
equation 

_-0 

where as in the simplest Htickel method one does not consider overlap between 
neighbors, and ~ and fi are the familiar coulomb and resonance integrals, respec- 
tively. Solution of this equation yields the two energy levels E -- ~ _ ft. As both 
and fl are inherently negative quantities, the eigenvalue E = ~ + fl is the lower one 
and it should be occupied by the single ~ eIectron. 

The Htickel method does not explicitly define the ~erf Hamiltonian and 
evaluation of ~ and fl is done empirically. The total energy is usually assumed to 
be just the sum of the orbital energies (Er = / ~  e@ For this one-electron g 

3 Pariser-Parr-Pople and other similar semiempirical treatments will not be discussed here. 
Excellent reviews including references may be found in the literature [-25-27]. 

4 See Ref. [25] and the references therein. 
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system, the electronic energy is just the orbital energy: 

Eoloc, = e~ (or ~ , )  

= ( 2 -  ~ (2pa "+ 2pb ) I~egefl 2- ~ (2p, ___ 2pb)) 

= (2p, I~r r l  2p,) _+_ (2pa I~ef l  2pb) 

= 0 ~ + _ f l ,  

where rc and ~* MO's are simple LCAO functions with overlap neglected. Assuming 
that the same basis set characterizes both states, ~ is constant and change in the 
energy of the system by a transition from the bonding to the antibonding level 
gives: 

A E e l e e  t = E a n t i b o n d i n g  - -  E b o n d i n g  = ( 5  - -  i f )  - -  ( ~  --}- i f )  = - -  2ft. 

Hence experimental excitation energies afford an evaluation of ft. Once fl is deter- 
mined, a may be obtained by equating - (~  +/~) to the energy of ionizing the 
rc electron. 

Table 5 contains calibrated and calculated ~ and fl values. The "empirical" 
transition energies are obtained from potential energy curves of the appropriate 
H states and "empirical" ionization energies, from the same curves and that for 
the ground state of H~. 

For the H states, the Hfickel operator is defined 

~tOe~f = - -  1/2 V 2 + ( -  r~ 1 _ r~ 1)  _}_ Veer(1 ) = T + U + Veff, 

where T is the kinetic energy term, U is the nuclear attraction term, and Vef r is the 
electron repulsion term. Vef f is the averaged repulsion between the a core and the 
zc electron and is written explicitly 

and then 

and 

V e f  f = (%(2)Ir12*[ 0"0(2))2, 

= (2p.(1)I~r 2p.(1)) 

= (2p.(1)IT(1)I 2p.(1)) + (2p.(1)[U(1)I 2p.(1)) 

+ (2p.(1) 2p.(1)]r~-21 ] ~r0(2 ) %(2)), 

fl = (2p.(1)lT(1)[ 2pb(1)) + (2pa(1) lU(1)l 2pb(1)) 

+ (2p.(1) 2pb(1 ) Ir~-21 1%(2) Cro(2)). 

SO far the functions 2pa and 2pb are free-atom 2pro AO's located on centers 
a and b, respectively, and only one set of ~ and/~ parameters arises. However, one 
should more realistically envision the molecular environment and consider 
distorted AO's. For example, consider the case where rt and 7z* MO's include 
overlap explicitly: 

and 

3 Theoret. chim. Acta (Bed.) Vol. 22 

= (2pa + 2pb)/{2(1 + S.b)}-~ 

7z* = (2p. - 2pb)/{2(1 -- Sab)}-~. 
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The c~ and fl parameters including overlap differ according to ungerade (u) and 
gerade (g) parity as follows: 

~. = ~/(1 + s~b), /L = B/(1 + s~b), 

cog = cr - Sagb), and /~g =/~/(1 - S~ab). 

Finally, the dependency of 0r and/~ upon multiplicity should be noted. Actually, 
then, for these model zc systems there are four unique sets of cr and fl parameters, 
rather than just the traditional set calibrated via experiment. 

Table 5 contains three different calculated ~ and/~ parameters, compared with 
the calibrated parameters. The three calculations will be denoted by I (best- 
molecule 2pro AO's and best-molecule core), II (free-atom 2pro AO's and best- 
molecule core), and III (free-atom 2pn AO's and free-atom core). Distorted or best- 
molecule 2pro AO's are the best AO's in the SCF sense, where the functions are 
determined in the average field of the molecular core. This molecular core is the 
best % MO in the SCF sense, also. Free-atom AO's are described above, and the 
free-atom core is the simplest possible LCAO-MO function: a o = 2-~(ls, + 1 sb) 
where ls~ and lsb are free-atom AO's. 

Columns I and II of Table 5 contain values which are not unreasonable when 
compared with the calibrated values. But the calculated c~ and//values have very 
nearly the same value while the calibrated values show c~ as roughly twice the 
magnitude of/~. One wonders why ~, a property of the atom, and/~, a property of 
the bond, are nearly identical for the calculated results. In addition, representing 
the core with the minimal basis LCAO-MO function excluding overlap poses 
another question. Why are these parameters positive, opposite in sign to those 
obtained empirically? A resolution of the calculated parameters into one- and two- 
electron parts provides the answers. 

Table 6 contains the various contributions to the calculated s and/?'s of 
Table 5. The notation here is the same as before, A comparison of II and III of 

Table 5. Evaluation of Hftckel cr and fl parameters a 

Calibrated 
from potential curves b Calculated 

ODC Browne c I II 
Best-molecule 2p~AO's Free-atom 2pr~AO's 
and best-molecule core and best-molecule core 

III  
Free-atom 2prcAO's 
and free-atom core 

1//u State 
0r -2 .13 -2 .03 -3 .00  -3 .05  0.548 
f l=  -0 .95 - 1.01 -2 .94  -3 .08  0.18l 

3//u State 
= -2 .37 -2 .28 -3 .19  -3 .05  0.548 

f l=  -1 .18 -1 .27  -3 .27  -3 .08 0.181 

a Units for cr and fl are eV; all values are for R = 2.00 bohrs (i.e. about Re). 
b a and fl values are obtained from 1FI,~IHg or 3Fl~311g transition energies and from 1/7 u 

and 3//,, ionization energies. See text for complete description. 
c Data on / / u  states from Ref. 1-21] and on Ha states from Ref. [22]. 
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Table 6. Resolution of  Hiickel ~ and fl parameters (eV) 
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T y p e  of  e n e r g y  I II III  

c o n t r i b u t i o n  Bes t -molecu le  F r e e - a t o m  F r e e - a t o m  
2 p n A O ' s  a n d  2 p n A O ' s  a n d  2 p g A O ' s  a n d  
bes t -mo lecu l e  co re  bes t -molecu le  co re  f r e e - a t o m  core  

t / / u  S ta te  

K ine t i c  1.35 1.11 3.40 2.75 3.40 2.75 

N u c l e a r  a t t r a c t i o n  - 5.92 - 5.40 - 12.89 - 11.68 - 12.89 - 11.68 
C o u l o m b i c  r e p u l s i o n  1.57 1.35 6.44 5.85 10.03 9.11 

T o t a l  - 3 . 0 0  - 2 . 9 4  - 3.05 - 3.08 0.54 0.18 

3/'/u S ta te  

K ine t i c  1.93 1.71 

N u c l e a r  a t t r a c t i o n  - 6 . 9 1  - 6 . 6 2  s a m e  as  a b o v e  s a m e  as a b o v e  
C o u l o m b i c  r e p u l s i o n  1.79 1.64 

T o t a l  - 3.19 - 3.27 

Table 6 shows that the coulombic repulsion are too large if the core is represented 
by the minimal basis L C A O - M O  rather than the S C F - L C A O - M O  function. 
If overlap were included explicitly in the simple MO, the ~ and fl values would be 
smaller; but both values would still be positive. However, if the core is represented 
by the S C F - L C A O - M O  function, the best-molecule core, coulombic repulsions 
decrease and a and fl take on reasonable, negative values. This is not unexpected 
because the latter representation is a more realistic one in that the core charge 
density is more tightly contracted about the molecular axis and then coulombic 
repulsions must diminish in magnitude. 

Columns ! and II of Table 6 show the dependence of ~ and fl values upon the 
2pn functions. In going from II to I, these functions become more diffuse and the 

electron does not feel the nuclei as strongly. Although kinetic energy, nuclear 
attraction energy, and repulsion energy all change significantly with a change in 
the 2pn representation, the total sum varies little and ~ and fl seem nearly insensi- 
tive to this change. A closer look at this situation shows that the kinetic and nuclear 
attraction energies become 40-60 % of their previous values in going from II to I. 
The repulsion energy, on the other hand, becomes about 25 % of its previous value. 
It would appear that the fl values are too large versus ~ values because the negative 
nuclear attraction is too large. Support for this conclusion is present in the data 
for the triplet state; in this state the n electron penetrates closer to the nuclei (no 
Fermi hole) and both ~ and fl are larger (more negative) than for the singlet state. 

Although an explanation has been offered as to why fl is approximately equal 
to ~, a further point must be made. It appears that the abnormally short bond 
length of this model system is part of the answer. At this very short internuclear 
separation the kinetic energies and nuclear attraction energies are about the same 
for ~ and fi, respectively, regardless of the fact that the n electron is associated with 
one nucleus in ~ and two nuclei in ft. If the "n bond" were to get longer, surely fl 
would get smaller in magnitude than a. 
3* 
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Conclusions 

The idealized n systems of this paper were selected to fulfill the conditions of 
the n-electron approximation, particularly the tenet that the a wave function 
remains unaltered by a change in the x wave function. In addition, the calculations 
readily afforded partitioning into a and x classes. 

It was shown (Fig. 2) that the core energy did not vary upon adjustment 
(reorganization) of the x MO accompanying a change in molecular state. Transi- 
tion energy and ionization potential comparisons showed that the single-configura- 
tion wave function describes properly the molecular changes at Re, within the 
frozen core approximation. Yet general conclusions on the n-electron approxima- 
tion are limited to an extent by the specific molecular systems considered. The 
analog x systems of this work are Rydberg systems with a principal quantum 
number of 1 for the o- core and involve ls  - 2px intershell effects. What about more 
conventional x systems which involve 2s - 2px intershell effects? In spite of the core 
distinctions, general conclusions about the analog systems should be more or less 
applicable to conventional systems because a-n interactions of the analog systems 
are not negligible and a-x interactions of conventional systems should be larger in 
magnitude. Certainly the influence of the a core on the x electrons (and vice versa) 
is larger in conventional systems than in Rydberg systems. That is to say, these 
idealized systems can be considered as a limiting case for peel and core interaction. 

Since accurate L C A O - M O - S C F  calculations have been performed on several 
"conventional" x-electron systems, the discussion will consider a few of them. 
The intent here is to compare results of this study with those reported on a broad 
spectrum of conventional systems. 

The explicit definition of the Hiickel one-electron x-electron operator ~ f f  
and subsequent calculations of the Hiickel coulomb and resonance integrals for 
these idealized x systems afford unambiguous conclusions. Reasonable calculated 

and fl values are obtained when the molecular core is taken into account properly. 
If the core is represented poorly, for example by a free-atom minimal basis 
L C A O - M O ,  ~ and fl are opposite in sign to experimentally derived values (Table 5). 
Although calculated a and fl values vary with a change in the type of x MO, the 
variation is small in going all the way from minimal basis free-atom to large basis 
best-molecule 2px MO's (Table 5). It would appear, then, that linear combinations 
of SCF AO's should be adequate for qualitative n-electron calculations, SO long 
as the a core is represented properly .This conclusion is also that of Silbey and co- 
workers [31], who compared linear combinations of carbon SCF AO's with highly 
accurate n MO's of C2 5. 

Furthermore, the resolution of the Htickel ~ and fl parameters into more 
nearly fundamental parts (Table 6) provides a look at the question of electronic 
reorganization resulting from a change in the electronic state of the molecule. 
It can be seen that a change (improvement) in the representation of the core causes 
a change (diminishing) in the o--x interactions, manifested in the coulombic repul- 

5 A promising approach which goes beyond the SCF AO level for n-electron calculations has been 
reported recently. In studies on the planar methyl radical CH a [32] and the planar molecular fragment 

+ NH 3 [33], it has been demonstrated that there is a considerable difference between a free-atom SCF2pn 
function and the atomic-like, molecular fragment 2pn functions, optimized within the molecular 
fragment. 
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sion term. It is normal  that a subsequent adjustment in the peel should follow, mani- 
fested in the kinetic energy and nuclear attraction terms. But this peel deformation 
causes another  reorganization in the core, manifested in another coulombic 
repulsion adjustment. As seen in columns I and II  of Table 6, the net effect of the 
peel deformation and subsequent core reorganization is small because of the 
noticeable cancellation among all energy terms. Thus, in spite of the distinctive 
changes in the peel and peel-core interactions, the two levels of calculations show 
little net difference because of a fortuitous cancellation of energy contributions. 

This sort of cancellation is not a coincidence of the idealized systems of this 
work. In studies on acetylene, Griffith and G o o d m a n  [34] suggested that the 
success of the n-electron approximat ion is based essentially on the cancellation 
of a and rc reorganization energy terms with the a-~ interaction ones. They observed 
that the total reorganization energy was small in comparison with the change in the 
a-~ interaction term. Orloff and Sinano~lu [35] included a-n changes in their 
study of the atomic valence-state reaction 2C ~ C -  + C--, appropriate  to n-electron 
systems. They noted a partial cancellation of a-n interaction by o- core changes. 
Moreover,  they included correlation effect and noted a cancelling of a correlation 
and a-n correlation effects. Similarly, Hermann and co-workers [32] noted that 
the constant core approximation partly compensated for the neglect of correlation 
effects in the planar methyl radical. Thus it appears that the adequacy of SCF 
computat ions for qualitative K-electron studies may be due to a fortuitous can- 
cellation of electronic energy terms. 

Finally, the question of calibrating Hfickel parameters  must be considered. 
The solution of the Hiickel secular equation depends upon the empirically 
calibrated e and fl parameters,  and thus the resulting L C A O - M O  wave functions 
are dependent upon the experimental conditions selected. The use of wave func- 
tions determined in this manner  for interpreting electron spin resonance spectra 
is just one example where empirically-derived wave functions have been used 
commonly and productively 6. Yet, if the calibration results are doubtful, the 
resulting wave functions may lead to invalid conclusions. 

For  the analog n systems of this paper, it was shown how only one set of 
calibrated parameters  was obtained. But the calibrated Hfickel parameters are 
more appropriately the averages ~=�89 + ~o) and ff=�89 + flo), respectively, 
for either singlet or triplet transition. Salem [36] demonstates convincingly the 
difficulty of obtaining unique, transferable Hfickel parameters  for some con- 
ventional rc systems. F rom empirical resonance energies fl is determined to be 
about  - 2/3 eV for benzene, while from transition energies it is determined to be 
about  - 4 eV for a series of alternant hydrocarbons,  one of which is benzene. 
Clearly, then, even for these idealized rc systems, calibrations must  be done 
cautiously with the knowledge that only the gross features of the Hiickel calcula- 
tions are meaningful. 

6 Hyperfine-splitting of ESR spectra of conjugated hydrocarbons is due to the interaction of an 
unpaired ~ electron with the proton of the hydrocarbon. The unpaired electron density 0~ is often 
correlated with the hyperfine-splitting constant of the proton a n by the relationship a n = Qo~, where Q 
is a constant. The density at a particular carbon atom can be calculated directly by squaring the cor- 
responding carbon AO coefficients ofa Hiickel LCAO-MO wave function. Calculated and experimental 
a n ratios often exhibit good agreement and, consequently, the interpretation of hyperfiiae structure of 
ESR spectra has been accomplished via simple Hiickel calculations 1-36, 37]. 
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